A Novel Albumin Gene Mutation (R222I) in Familial Dysalbuminemic Hyperthyroxinemia
نویسندگان
چکیده
CONTEXT Familial dysalbuminemic hyperthyroxinemia, characterized by abnormal circulating albumin with increased T4 affinity, causes artefactual elevation of free T4 concentrations in euthyroid individuals. OBJECTIVE Four unrelated index cases with discordant thyroid function tests in different assay platforms were investigated. DESIGN AND RESULTS Laboratory biochemical assessment, radiolabeled T4 binding studies, and ALB sequencing were undertaken. (125)I-T4 binding to both serum and albumin in affected individuals was markedly increased, comparable with known familial dysalbuminemic hyperthyroxinemia cases. Sequencing showed heterozygosity for a novel ALB mutation (arginine to isoleucine at codon 222, R222I) in all four cases and segregation of the genetic defect with abnormal biochemical phenotype in one family. Molecular modeling indicates that arginine 222 is located within a high-affinity T4 binding site in albumin, with substitution by isoleucine, which has a smaller side chain predicted to reduce steric hindrance, thereby facilitating T4 and rT3 binding. When tested in current immunoassays, serum free T4 values from R222I heterozygotes were more measurably abnormal in one-step vs two-step assay architectures. Total rT3 measurements were also abnormally elevated. CONCLUSIONS A novel mutation (R222I) in the ALB gene mediates dominantly inherited dysalbuminemic hyperthyroxinemia. Susceptibility of current free T4 immunoassays to interference by this mutant albumin suggests likely future identification of individuals with this variant binding protein.
منابع مشابه
Familial Dysalbuminemic Hyperthyroxinemia in a Japanese Man Caused by a Point Albumin Gene Mutation (R218P).
Familial dysalbuminemic hyperthyroxinemia (FDH) is a familial autosomal dominant disease caused by mutation in the albumin gene that produces a condition of euthyroid hyperthyroxinemia. In patients with FDH, serum-free thyroxine (FT4) and free triiodothyronine (FT3) concentrations as measured by several commercial methods are often falsely increased with normal thyrotropin (TSH). Therefore, sev...
متن کاملFamilial Dysalbuminemic Hyperthyroxinemia that was Inappropriately Treated with Thiamazole Due to Pseudo-thyrotoxic Symptoms
We herein report the case of a Japanese woman with familial dysalbuminemic hyperthyroxinemia (FDH) who was initially diagnosed with Graves' disease. Direct genomic sequencing revealed a guanine to cytosine transition in the second nucleotide of codon 218 in exon 7 of the albumin gene, which then caused a proline to arginine substitution. She was finally diagnosed with FDH, which did not require...
متن کاملClinical, Genetic, and Protein Structural Aspects of Familial Dysalbuminemic Hyperthyroxinemia and Hypertriiodothyroninemia
Familial dysalbuminemic hyperthyroxinemia (FDH-T4) and hypertriiodothyroninemia (FDH-T3) are dominantly inherited syndromes characterized by a high concentration of thyroid hormone in the blood stream. The syndromes do not cause disease, because the concentration of free hormone is normal, but affected individuals are at risk of erroneous treatment. FDH-T4 is the most common cause of euthyroid ...
متن کاملStructural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia.
Human serum albumin (HSA) is the major protein component of blood plasma and serves as a transporter for thyroxine and other hydrophobic compounds such as fatty acids and bilirubin. We report here a structural characterization of HSA-thyroxine interactions. Using crystallographic analyses we have identified four binding sites for thyroxine on HSA distributed in subdomains IIA, IIIA, and IIIB. M...
متن کاملMutations in a specific human serum albumin thyroxine binding site define the structural basis of familial dysalbuminemic hyperthyroxinemia.
The familial dysalbuminemic hyperthyroxinemia (FDH) phenotype results from a natural human serum albumin (HSA) mutant with histidine instead of arginine at amino acid position 218. This mutation results in an enhanced affinity for thyroxine. Site-directed mutagenesis and a yeast protein expression system were used to synthesize wild type HSA and FDH HSA as well as several other HSA mutants. Stu...
متن کامل